
A Trie Merging Approach with Incremental Updates
for Virtual Routers

Layong Luo*†, Gaogang Xie*, Kavé Salamatian‡, Steve Uhlig§, Laurent Mathy¶, Yingke Xie*
*Institute of Computing Technology, Chinese Academy of Sciences (CAS), China

†University of CAS, China, ‡University of Savoie, France
§Queen Mary, University of London, UK, ¶University of Liège, Belgium

{luolayong, xie, ykxie}@ict.ac.cn, kave.salamatian@univ-savoie.fr
steve@eecs.qmul.ac.uk, laurent.mathy@ulg.ac.be

Abstract—Virtual routers are increasingly being studied, as
an important building block to enable network virtualization.
In a virtual router platform, multiple virtual router instances
coexist, each having its own FIB (Forwarding Information Base).
In this context, memory scalability and route updates are two
major challenges. Existing approaches addressed one of these
challenges but not both. In this paper, we present a trie merging
approach, which compactly represents multiple FIBs by a merged
trie and a table of next-hop-pointer arrays to achieve good
memory scalability, while supporting fast incremental updates by
avoiding the use of leaf pushing during merging. Experimental
results show that storing the merged trie requires limited memory
space, e.g., we only need 10MB memory space to store the
merged trie for 14 full FIBs from IPv4 core routers, achieving a
memory reduction by 87% when compared to the total size of
the individual tries. We implement our approach in an SRAM
(Static Random Access Memory)-based lookup pipeline. Using
our approach, an on-chip SRAM-based lookup pipeline with
5 external stages is sufficient to store the 14 full IPv4 FIBs.
Furthermore, our approach can guarantee a minimum update
overhead of one write bubble per update, as well as a high lookup
throughput of one lookup per clock cycle, which corresponds
to a throughput of 251 million lookups per second in the
implementation.

I. INTRODUCTION

Network virtualization has recently attracted much interest
as it enables the coexistence of multiple virtual networks on a
shared physical substrate [1]. The virtual router platform has
emerged as a key building block of the physical substrate for
virtual networks [2–9]. In a virtual router platform, multiple
virtual router instances coexist, each with its own FIB (For-
warding Information Base). With a growing demand for virtual
networks, the number of virtual router instances running over
a single physical platform and their corresponding FIBs is
expected to increase. Generally, it is desirable to store FIBs
in high-speed memory to enable high lookup performance.
However, the size of high-speed SRAMs (Static Random
Access Memory) is limited in router line cards or in general-
purpose processors caches. Therefore, supporting as many
FIBs as possible in the limited available high-speed memory
is becoming a challenge.

With an increasing number of FIBs, more than one FIB
is expected to be stored on each high-speed memory chip,
and the number of updates to the content of each memory

chip becomes the aggregate of the updates of these FIBs.
This increases the update frequency, and decreases lookup
performance, potentially leading to packet drops, unless fast
incremental updates are possible to the multiple FIBs in a
single memory chip.

The two above challenges, namely memory scalability and
fast incremental updates for virtual routers, have attracted
lately some attention in the literature and several approaches
have been proposed. However, no previous work has addressed
both challenges. For example, [5] proposes a solution that
achieves good memory scalability but uses leaf pushing [10]
to reduce the node size, which leads to complicated and
slow updates [9]. In [8, 9], solutions enabling fast updates
fail to achieve good memory scalability. They require almost
linear memory increase since they do not actually apply node
sharing.

In our previous work [11], we proposed a hybrid IP lookup
architecture to address the update challenge, but did not target
the memory scalability issue for virtual routers. In this paper,
we present a trie merging approach that addresses both of
the above challenges simultaneously, i.e., both good memory
scalability through trie merging, and fast incremental updates
and fast lookups through a lookup pipeline that guarantees a
minimum update overhead of one write bubble per update,
and a lookup throughput of one lookup per clock cycle. More
precisely, the key contributions of this paper are as follows:

1) We propose a new data structure for the nodes of the
merged trie, different from the one used in classical
trie merging approaches [5]. This new data structure
introduces a prefix bitmap that enables the separation of
trie nodes and next-hop pointers. This keeps the node
size small even when the number of FIBs is large. This
data structure avoids leaf pushing during the merging
process, and facilitates fast incremental updates.

2) Based on the proposed trie merging approach, we imple-
ment an SRAM-based lookup pipeline that guarantees
a minimum update overhead of one write bubble per
update, as well as a high lookup throughput of one
lookup per clock cycle. We implement this lookup
pipeline for a virtual router platform with 14 full IPv4
FIBs and evaluate its performance.

2

left ptr right ptr array ptr prefix bitmap
(n bits)

NHI1 NHI2 NHI3 NHIn

trie node

next-hop-pointer array

0

A1

A3

A2

A4

0

B1

B2

0

B3

prefix next hop

prefix next hop

0*
1*
00*
10*

0*
10*
11*

A1
A2
A3
A4

B1
B2
B3

(a) (b)

FIB 1

FIB 2

trie 1

trie 2

A1 B1

0 0

A2 0

A3 0 A4 B2 0 B3

P4

P3

P5 P6

P1

P2

0,0

1,1 1,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

left ptr right ptr NHI1 NHI2 NHIn

000* B4 0

B4

0 B4

0 0

A4 B2 A2 B3

0 0

A1 B1

A3 B1A3 B4

0 0

0 0

(a) (b)

P7

0,1

0 B4P7

Fig. 1. (a) Two sample FIBs, and (b) their corresponding 1-bit tries

The rest of the paper is organized as follows. Section
II presents the background and our assumptions. Section
III introduces the proposed trie merging approach and its
corresponding lookup and update processes. In Section IV,
we evaluate the memory requirements. In Section V, we de-
scribe the pipelined implementation, and discuss the memory
consumption, update overhead and lookup performance. We
conclude in Section VI.

II. BACKGROUND AND ASSUMPTIONS

The literature proposes two types of approaches for storing
multiple FIBs in a virtual router platform: separated and
merged approaches.

In a separated approach, FIBs are stored in separate memory
space with possible different data structures. This approach
ensures strong FIBs isolation but at the cost of large memory
consumption. By using such an approach, Unnikrishnan et
al. [12] built virtual routers over the NetFPGA platform [13]
with only up to five virtual router instances due to the limited
memory in the hardware.

The second type of approach merges FIBs together to
improve memory scalability. In [5], an efficient approach is
proposed to merge multiple FIBs into a single trie, which
we will refer to as trie overlap. Unless otherwise stated, the
term “trie” means a 1-bit trie (i.e., a binary trie) as defined
in [14], with the next-hop pointer representing the next hop
information for simplicity, and an invalid next-hop pointer
being denoted as 0. In trie overlap, first a 1-bit trie is built
from each FIB (see Fig. 1). Then, as illustrated in Fig. 2(a),
the nodes corresponding to the same prefix in all the tries are
merged together in a merged node, and the number of next-
hop pointers in each merged node is equal to the number of
FIBs (see Fig. 3 for the data structure of a node in the merged
trie). As a large number of nodes are shared, the size of the
merged trie is smaller than the sum of the size of individual
tries.

However, as the number of FIBs increases, the node size
increases, leading to large trie size and multiple memory
accesses per node visit, degrading lookup and update perfor-
mance. The authors of [5] proposed to use leaf pushing [10] to

left ptr right ptr array ptr prefix bitmap
(n bits)

NHI1 NHI2 NHI3 NHIn

trie node

next-hop-pointer array

0

A1

A3

A2

A4

0

B1

B2

0

B3

prefix next hop

prefix next hop

0*
1*
00*
10*

0*
10*
11*

A1
A2
A3
A4

B1
B2
B3

(a) (b)

FIB 1

FIB 2

trie 1

trie 2

A1 B1

0 0

A2 0

A3 0 A4 B2 0 B3

P4

P3

P5 P6

P1

P2

0,0

1,1 1,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

left ptr right ptr NHI1 NHI2 NHIn

000* B4 0

B4

0 B4

0 0

A4 B2 A2 B3

0 0

A1 B1

A3 B1A3 B4

0 0

0 0

(a) (b)

P7

0,1

0 B4P7

Fig. 2. The merged trie. (a) in trie overlap without leaf pushing and (b) in
trie overlap with leaf pushing

left ptr right ptr array ptr prefix bitmap
(n bits)

NHI1 NHI2 NHI3 NHIn

trie node

next-hop-pointer array

0

A1

A3

A2

A4

0

B1

B2

0

B3

prefix next hop

prefix next hop

0*
1*
00*
10*

0*
10*
11*

A1
A2
A3
A4

B1
B2
B3

(a) (b)

FIB 1

FIB 2

trie 1

trie 2

A1 B1

0 0

A2 0

A3 0 A4 B2 0 B3

P4

P3

P5 P6

P1

P2

0,0

1,1 1,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

left ptr right ptr NHI1 NHI2 NHIn

Fig. 3. Node data structure of the merged trie in trie overlap without leaf
pushing

reduce the node size in the merged trie, by pushing all the next-
hop pointers existing in intermediate nodes to leaf nodes (see
for example Fig. 2(b)). After leaf pushing, every intermediate
node has two children but no next-hop pointers, and every
leaf node has next-hop pointers but no children. Therefore,
each node can store only one pointer, pointing to its children
for intermediate nodes, or pointing to a next-hop-pointer array
containing n next-hop pointers, where n is the number of FIBs,
for leaf nodes. This reduces significantly the node size and the
trie size. However, leaf pushing makes incremental updates
complicated, and a single update may result in reconstructing
the entire leaf-pushed trie [15].

In particular, trie overlap works well when the individual
FIBs have similar original tries. However, the prefix sets of
different FIBs are not always similar, resulting in dissimilar
tries. To address this issue, Song et al. [6] introduced a
trie braiding mechanism that transforms dissimilar tries into
similar ones by allowing to swap freely the left and right sub-
tries of any node. Nonetheless, Ganegedara et al. [7] observed
that even by using trie braiding, the original tries built from
different Provider Edge (PE) routers are hard to be transformed
to similar ones. This is because most prefixes of any PE router
have a common portion, which is different among PE routers.
They therefore proposed a multiroot approach, which allows
tries to be merged at split nodes, rather than only at the root
nodes. The sub-tries rooted at the split nodes can be further
merged using trie overlap and trie braiding.

Trie overlap, trie braiding and multiroot are all based on
node sharing to reduce the memory usage. By contrast, Le et
al. [8] and Ganegedara et al. [9] applied a simple merging
approach without node sharing to achieve fast updates. How-
ever, the size of the merged tree (or trie) in their approaches
increases linearly with the number of prefixes (or tries) [8, 9],
resulting in poor memory scalability.

In this paper, we focus on the trie-based merging approach
with node sharing. Similarly to trie overlap, we assume that
tries to be merged are similar. By this, we mean that even if the

3

tries to be merged are dissimilar, these can be transformed into
similar ones before merging them, using existing approaches
such as trie braiding [6] and multiroot [7]. However, differently
from trie overlap that has to use leaf pushing in order to reduce
the node size of the merged trie, and significantly increases
the update overhead [9], in this paper, we propose a new trie
merging approach that does not rely on leaf pushing. In place
of leaf pushing, we reduce the node size of the merged trie
by introducing a prefix bitmap in each node to separate next-
hop pointers from the trie node. As a result, we can build a
memory-efficient merged trie that can support fast incremental
updates.

III. PROPOSED TRIE MERGING APPROACH

A. Observation

A key observation is that, in trie overlap without leaf
pushing, when an IP lookup is visiting a node in the merged
trie, the next-hop pointers (i.e., the next-hop-pointer array),
contained in it are not necessarily immediately accessed. In
fact, an IP lookup only needs to access the next-hop-pointer
array of the node corresponding to the longest matched prefix
after the trie search terminates. Therefore, it is possible to
separate the next-hop-pointer arrays from the merged trie and
store them in a different memory.

We illustrate this with an example. Suppose we are looking
up for IP address 100 in the merged trie in Fig. 2(a). The
nodes <0, 0>, <A2, 0>, and <A4, B2> will be visited in
sequence in the lookup. However, the next-hop-pointer array
is not necessarily accessed in any one of these nodes during
trie search. We only need to access the next-hop-pointer array
of node <A4, B2> that corresponds to the longest matched
prefix 10* after the trie search terminates. It is therefore not
necessary to store these next-hop-pointer arrays in the same
memory as the nodes of the merged trie. This observation is
the key motivation behind our new data structures.

B. Data Structures

Based on the above observation, we separate the storage
of the next-hop-pointer arrays from the merged trie storage,
i.e., instead of storing a next-hop-pointer array in each node
(see Fig. 3), we only need a simple pointer, pointing to
the corresponding next-hop-pointer array in another memory
(see Fig. 4). However, we need also to indicate whether the
corresponding prefix of the node is a valid prefix for each one
of the merged FIBs so that we can find the longest matched
prefix. We add a prefix bitmap to each node to indicate the
prefix information, i.e., the ith bit (i ∈ [1, n]) of the prefix
bitmap is set to 1 when the prefix associated with this node is
a valid prefix in the ith FIB, where n denotes the number of
FIBs. The resulting data structures of the node in the merged
trie and its corresponding next-hop-pointer array are shown in
Fig. 4. Each node of the merged trie stores four elements: a
left child pointer (left ptr), a right child pointer (right ptr), an
array pointer (array ptr) pointing to its corresponding next-
hop-pointer array and a prefix bitmap with n-bit size. The
next-hop-pointer array is stored in a separate data structure

left ptr right ptr array ptr prefix bitmap
(n bits)

NHI1 NHI2 NHI3 NHIn

trie node

next-hop-pointer array

0

A1

A3

A2

A4

0

B1

B2

0

B3

prefix next hop

prefix next hop

0*
1*
00*
10*

0*
10*
11*

A1
A2
A3
A4

B1
B2
B3

(a) (b)

FIB 1

FIB 2

trie 1

trie 2

A1 B1

0 0

A2 0

A3 0 A4 B2 0 B3

P4

P3

P5 P6

P1

P2

0,0

1,1 1,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

left ptr right ptr NHI1 NHI2 NHIn

Fig. 4. Data structures of trie node and next-hop-pointer array

and eventually in a different memory, which contains n next-
hop pointers.

Compared to the node data structure in trie overlap without
leaf pushing (see Fig. 3), the proposed node data structure
scales better in terms of node size. In our approach, with
adding one additional trie to merge, only 1 bit of prefix bitmap
is added to the nodes of the merged trie, while one next-
hop pointer (e.g., 8 bits) has to be added in each node in
trie overlap without leaf pushing. Therefore, as the number
of tries increases, the node size of our proposed merged trie
stays much smaller than that of the merged trie in trie overlap
without leaf pushing.

C. Trie Merging Algorithm

In our approach, the trie merging algorithm is similar to
the one of trie overlap [5], except that the node data structure
of the merged trie is different. Initially, a 1-bit trie is built
from each FIB. To distinguish each FIB from each other in
the same virtual router platform, a unique virtual router ID
(VID) is assigned to each FIB. For merging, the root node of
a trie is first merged into the root node of the merged trie.
The prefix bitmap in the root node of the merged trie and
the corresponding next-hop-pointer array should be modified
according to the root node of the trie to be merged and its
VID. This algorithm is then called recursively to merge its
left sub-trie and right sub-trie, respectively.

The results of applying this merging algorithm to the two
tries shown in Fig. 1 are depicted in Fig. 5. The merging
process generates a merged trie and a table of next-hop-pointer
arrays. To show the difference between trie overlap without
leaf pushing and our merging approach, we take the prefix 1*
in Fig. 1 as an example. In FIB 1, prefix 1* is a valid prefix and
its associated next-hop pointer is A2; in FIB 2, prefix 1* is not
a valid prefix. Therefore, in trie overlap without leaf pushing
(as shown in Fig. 2(a)), a next-hop-pointer array <A2, 0>
should be stored in the corresponding node. In our approach,
instead of storing the entire next-hop-pointer array, we only
need to store a single pointer P3 pointing to the array <A2,
0> in the table of next-hop-pointer arrays stored in a separate
memory. To show whether prefix 1* is a valid prefix in each
FIB, a prefix bitmap “1,0” is attached in the corresponding
node, where the first bit ‘1’ denotes that prefix 1* is a valid
prefix in FIB 1, and the second bit ‘0’ denotes that prefix 1*
is not a valid prefix in FIB 2.

4

left ptr right ptr array ptr prefix bitmap
(n bits)

NHI1 NHI2 NHI3 NHIn

trie node

next-hop-pointer array

0

A1

A3

A2

A4

0

B1

B2

0

B3

prefix next hop

prefix next hop

0*
1*
00*
10*

0*
10*
11*

A1
A2
A3
A4

B1
B2
B3

(a) (b)

FIB 1

FIB 2

trie 1

trie 2

A1 B1

0 0

A2 0

A3 0 A4 B2 0 B3

P4

P3

P5 P6

P1

P2

0,0

1,1 1,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

left ptr right ptr NHI1 NHI2 NHIn

000* B4 0

B4

0 B4

0 0

A4 B2 A2 B3

0 0

A1 B1

A3 B1A3 B4

0 0

0 0

(a) (b)

P7

0,1

0 B4P7

Fig. 5. A merged trie and its corresponding table of next-hop-pointer arrays

D. Lookup Process

The lookup process on the merged trie is similar to that
on an original 1-bit trie [14]. The major difference is that we
check an extra prefix bitmap when accessing each node.

For each incoming packet, the destination IP address and the
VID are generated based on its packet header. The destination
IP address is used to traverse the merged trie and the VID is
used as an index to choose which bit of the prefix bitmap to
check. When visiting a node, if the chosen bit of the prefix
bitmap is set, the currently visited node is associated with
a valid prefix, and its array pointer should be recorded. The
recorded array pointer will be updated if the following visited
node is also associated with a valid prefix. When the trie
lookup terminates, we find the next-hop-pointer array through
the array pointer, and extract the V IDth next-hop pointer in
the array. In this way, a single memory access is needed to
find the next-hop pointer after the trie traversal terminates.

For example, suppose the destination IP address of a packet
is 100 and its VID is 1 and we are looking up in the merged
trie shown in Fig. 5. Nodes P1, P3 and P5 will be accessed
in sequence (for simplicity, we use the name of the array
pointer in each node to denote the node itself). First, node
P1 is accessed and since the first bit position in the prefix
bitmap is ‘0’, node P1 is not associated with a valid prefix
in FIB 1. Then, we continue to the next node P3, where the
corresponding prefix bit in the bitmap is ‘1’ so this node is
associated with a valid prefix in FIB 1 and P3 is recorded as the
array pointer. We continue to node P5 that is also associated
with a valid prefix in FIB 1 as its corresponding prefix bit is
‘1’. Therefore, P5 is recorded as a new array pointer. Since
node P5 is a leaf node, the trie traversal terminates and we
use the latest array pointer P5 and the index 1 from VID to
get the next-hop pointer A4 from the table of next-hop-pointer
arrays.

E. Update Process

In terms of route updates, the original 1-bit trie is an
excellent data structure [14, 15], as at most a single prefix
should be modified for each route update. By avoiding leaf
pushing during merging, we keep the merged trie very similar
to the original 1-bit trie. In our approach, the updates are
processed similarly to the original 1-bit trie, and at most one
prefix should be modified for each route update.

P4

P3

P5 P6

P1

P2

0,0

1,1 0,0

1,0 1,1 0,1

a merged trie

a table of next-hop-
pointer arrays

the merged trie
the table of
next-hop-

pointer arrays

the next-hop
tables

Memory 1 Memory 2 Memory 3

P7

0,1

A1 B1
A2 0
A3 0
A4 B2
0 B3

0 0P1
P2
P3
P4
P5
P6

0 B4P7

Fig. 6. Deletion of prefix 1* in FIB 1

For example, if we delete prefix 1* from FIB 1 shown in
Fig. 1, the corresponding modification in the merged trie is
shown in Fig. 6. First, we use prefix 1* to traverse the trie, and
find the node corresponding to prefix 1* (node P3). Then, VID
1 is used to choose the first bit of the prefix bitmap in node
P3 and this bit is reset to ‘0’, which makes prefix 1* invalid
for FIB 1. Note that the corresponding next-hop-pointer array
does not need to be modified in this case.

The insertion of a new prefix and the modification of an
existing prefix can be implemented similarly with a single
prefix change. The only difference is that, for insertions and
modifications, the table of next-hop-pointer arrays should also
be modified. In these cases, one additional memory access to
the table of next-hop-pointer arrays is needed after the update
on the merged trie terminates.

IV. EVALUATION OF MEMORY USAGE

In this section, we compare the memory requirements of
four approaches: separated approach, which stores each trie
separately without node sharing, trie overlap without leaf
pushing, trie overlap with leaf pushing, and our proposed
approach. The lookup and update performance will depend
on implementation details and will be evaluated in the imple-
mentation section.

A. Routing Tables

As router virtualization is still not widely used, limited data
is available. Instead, we use publicly available BGP routing
data and assume that these routing tables are used for virtual
routers. We rely on 14 full IPv4 BGP routing tables collected
from the RIPE RIS Project [16]. We extracted for each table
the unique prefixes and formed a FIB for it. A 1-bit trie was
built for each of them. We list in Table I the statistics of the
routing tables and the resulting tries.

B. Number of Trie Nodes

We show for the four techniques compared, in Fig. 7(a) the
total number of trie nodes in the merged trie as a function of
the number of virtual routers. As expected for the separated
approach, the total number of trie nodes increases linearly as
the number of virtual routers increases. Trie overlap without
leaf pushing and our proposed approach have the same number
of nodes in the merged trie as the prefix sets similarities are

5

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14

to
ta

l t
rie

 s
iz

e(
M

B
)

of virtual routers (i.e., tries)

separate

overlap w/o leaf pushing

overlap w/ leaf pushing

our approach

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14

of

 tr
ie

 n
od

es

of virtual routers (i.e., tries)

separate

overlap w/o leaf pushing

overlap w/ leaf pushing

our approach

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14

no
de

 s
iz

e(
bi

t)

of virtual routers (i.e., tries)

separate

overlap w/o leaf pushing

overlap w/ leaf pushing

our approach

(a) (b) (c)

Fig. 7. Memory comparison. (a) number of nodes, (b) node size, and (c) trie size

TABLE I
ROUTING TABLES (2011.09.29, 08:00)

Router Location # of
prefixes

of
nodes

of updates
Announce Withdraw

rrc00 Amsterdam 399,439 974,050 3,480,740 325,553

rrc01 London 375,751 918,417 2,040,708 227,723

rrc03 Amsterdam 373,306 913,538 1,418,791 1,416,709

rrc04 Geneva 382,122 936,888 768,336 59,345

rrc05 Vienna 375,196 915,995 1,476,029 218,630

rrc06 Otemachi 367,984 898,119 60,522 7,275

rrc07 Stockholm 379,788 927,129 572,376 36,230

rrc10 Milan 373,024 910,537 291,679 191,079

rrc11 New York 379,166 926,368 1,251,304 219,523

rrc12 Frankfurt 386,924 947,351 2,436,235 318,413

rrc13 Moscow 381,561 935,345 2,499,320 192,601

rrc14 Palo Alto 380,048 926,692 1,175,918 82,797

rrc15 Sao Paulo 392,537 957,129 5,275,719 397,876

rrc16 Miami 382,552 935,854 17,886 1,150

exploited in the same way. For these two approaches the total
number of nodes increases slowly. This can be explained by
observing that as the number of tries increases, the merged
trie become denser and more nodes are shared. After merging
14 tries, the merged trie contains 1,083,217 nodes, which are
just 11% more nodes than that in the largest individual trie
(trie relative to the rrc0 router). The behaviour for trie overlap
with leaf pushing is similar with a slow increase of the number
of nodes. However, leaf pushing adds some extra nodes and
the number of nodes becomes larger than that in trie overlap
without leaf pushing and our proposed approach.

C. Node Size

We can also compare the storage size of each node. We
have used 21 bits to store the left or right child pointer (a
21-bit pointer can represent 2,097,152 nodes, which is larger
than the total number of nodes in the merged trie after 14 tries
are merged), 8 bits to store the next-hop pointer and 21 bits
for the array pointer. The node sizes are shown in Fig. 7(b).
The node size of each individual node remains the same at
50 bits in the separated approach and does not depend on the

number of virtual routers. The node size in trie overlap with
leaf pushing also stays the same at 21 bits, as each node only
contains a single pointer (as mentioned in Section II). In trie
overlap without leaf pushing, every added trie leads to an 8-bit
(the size of a next-hop pointer) increase in the node size, since
one next-hop pointer has to be added into the node for every
added trie. In our approach, every added trie leads to only a
1-bit increase in the node size, since only 1 bit needs to be
added in the prefix bitmap.

D. Total Trie Size

The total trie size is determined by the total number of
nodes and the node size, which we have already evaluated in
the above two sub-sections. We now evaluate the total trie size.
The results are shown in Fig. 7(c).

Trie overlap with leaf pushing scales best in terms of trie
size, as one node only needs to contain a single pointer.
Our approach can achieve a significant memory saving when
compared to the separated approach and the trie overlap
without leaf pushing. We need only 10MB memory space for
merging 14 tries and achieve a memory reduction by 87% and
50% respectively, when compared to the separated approach
and trie overlap without leaf pushing. Moreover, the growth
trend of the total trie size shows that, the memory requirement
in our approach increases more slowly than that of those two
approaches. This makes our approach a scalable solution for
virtual routers in terms of high-speed memory requirements.

E. Size of the Table of Next-hop-pointer Arrays

In both our approach and trie overlap with leaf pushing,
the next-hop pointers are separated from the merged trie.
Therefore, an extra table of next-hop-pointer arrays is needed.
However, as only a single memory access is needed to this
table after the end of trie traversal, this table can be stored in
a relatively slow and large external memory, making the size
of this table less important. In our experiments, after merging
14 tries, the number of nodes becomes 1,083,217, and thus the
size of the table of next-hop-pointer arrays is about 14MB.

F. Size of the Complete Next Hops

We also need memory space to store the complete next hop
information that consists of the IP address of the next hop

6

Stage 1 Stage 2 Stage nlookup

update
next hop
pointer

A table of
next-hop-

pointer
arrays

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6

ra
tio

 o
f n

od
es

 in
 o

n-
ch

ip

st
ag

es
 (%

)

of external stages

height based
level based

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

of

 n
od

es
 p

er
 le

ve
l

level

0.0E+00
5.0E+04
1.0E+05
1.5E+05
2.0E+05
2.5E+05
3.0E+05
3.5E+05
4.0E+05
4.5E+05

32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

of

 n
od

es
 p

er
 h

ei
gh

t

height

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 3 5 7 9 11 13 15 17 19 21 23

of

 n
od

es
 p

er
 s

ta
ge

stage

Fig. 8. A native pipeline for our merged trie

and the corresponding output interface. Most routers have less
than 40 output interfaces, so the total size of the next hop
information for a FIB is usually below 200 bytes [5], and is
the same for all approaches. Therefore, we will ignore the
complete next hops in the rest of this paper.

V. PIPELINED IMPLEMENTATION

The SRAM-based lookup pipeline [17] is a very good
implementation for trie-based data structures, as it scales
well in terms of lookup throughput [18]. In this section,
we implement an SRAM-based lookup pipeline for scalable
virtual routers, and compare the four approaches.

A. Native Pipeline

A native way for pipelining is to map each trie level into
a different pipeline stage, each with its own SRAM [19, 20].
For example, in Fig. 5, there are four trie levels: node P1 in
level 1, node P2, P3 in level 2, node P4, P5, P6 in level 3 and
node P7 in level 4. In a native pipeline, each stage contains
the nodes in one of the four levels. Fig. 8 shows the native
pipeline in our approach. It consists of n stages, where n is
the number of levels in the merged trie. In the ith stage, all
the nodes in the ith level of the trie are stored. As we separate
the next-hop-pointer arrays from the trie nodes, an additional
pipeline stage should be added at the end of the pipeline to
store the table of the next-hop-pointer arrays. For an IP lookup,
it enters into the pipeline at stage 1, goes through the pipeline
by accessing at most one node in each stage, and exits after
the next-hop pointer is obtained at the final stage. As each
pipeline stage has its own separate SRAM, all stages can be
visited simultaneously. As a result, a new IP lookup can be
issued into the pipeline after the preceding IP lookup moves
to stage 2. If each node can be accessed in just one clock
cycle, the SRAM-based lookup pipeline can achieve a lookup
throughput of one lookup per clock cycle. Route updates in
the pipeline are performed in the form of write bubbles [19].
A write bubble also goes through the pipeline by accessing at
most one node in each stage, at the same speed as the lookup.
The difference between a write bubble and an IP lookup is that,
a write bubble performs at most one write operation in each
stage, while an IP lookup always performs read operations.

B. Memory Issues in Practical Pipelines

In practice, the native pipeline suffers from two memory
issues.

The first issue is the memory size. In the pipeline, a large
number of separate SRAMs are required, as each pipeline
stage has its own SRAM. For example, in the case of IPv4,
we need 33 separate SRAMs in the native pipeline. It is
impractical to have so many separate SRAM chips in router

Stage 1 Stage 2 Stage nlookup

update
next hop
pointer

A table of
next-hop-

pointer
arrays

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6

ra
tio

 o
f n

od
es

 in
 o

n-
ch

ip

st
ag

es
 (%

)

of external stages

height based
level based

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 3 5 7 9 11 13 15 17 19 21 23

of

 n
od

es
 p

er
 s

ta
ge

stage

(a) (b)

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

0 2 4 6 8 101214161820222426283032

of

 n
od

es
 p

er
 l

ev
el

level

0.0E+00
5.0E+04
1.0E+05
1.5E+05
2.0E+05
2.5E+05
3.0E+05
3.5E+05
4.0E+05
4.5E+05

323028262422201816141210 8 6 4 2 0

of

 n
od

es
 p

er
 h

ei
gh

t

height

Fig. 9. (a) Node distribution based on trie level, and (b) node distribution
based on trie height

line cards. FPGA is a natural candidate to implement an
SRAM-based pipeline, as it contains a large number of on-
chip SRAMs. For example, a large FPGA from Xilinx [21]
contains over 100 on-chip SRAMs. However, the total size
of on-chip SRAMs within the FPGA is too small to store a
full IPv4 FIB. For example, the total size of on-chip SRAMs
in large Virtex-6 FPGAs [21] is from 5Mb to 37Mb, while
a single 1-bit trie built from a full IPv4 FIB is 5.8MB (i.e.,
46.4Mb), see Fig. 7(c). The situation gets worse in the context
of virtual routers, where multiple FIBs exists. In order to solve
the memory size issue of the SRAM-based lookup pipeline
within the FPGA, large external SRAMs are required. These
large external SRAMs can be added into the pipeline in two
ways. First, the few largest levels of the trie can be moved to
external SRAMs [22]. Fig. 9(a) shows the node distribution of
the merged trie for 14 full IPv4 FIBs in our approach based
on trie levels. The few levels around level 24 contain many
more nodes than other levels, and thus these stages can be
moved to external SRAMs to significantly reduce the memory
requirement of the on-chip SRAM-based pipeline. We will call
this approach “level-based partitioning”. We propose another
way for adding external stages, by moving trie nodes based
on trie height to external SRAMs. For example, all the leaf
nodes (i.e., nodes with height 0) in Fig. 5 can be moved
to an external stage. More stages can be moved to external
SRAMs by removing leaf nodes repeatedly. Fig. 9(b) shows
the node distribution based on trie height. The few stages
around height 0 contain many more nodes than other stages.
Therefore, moving these few stages to external SRAMs can
also significantly reduce the memory requirement of the on-
chip SRAM-based pipeline. We will call this approach “height-
based partitioning”. Fig. 10 shows the ratio of the remaining
nodes in the on-chip pipeline after a few stages are moved to
external stages. We observe that after moving a given number
of stages to external SRAMs, the number of nodes left in on-
chip SRAMs when using height-based partitioning is smaller
than that when using level-based partitioning. Therefore, we
will adopt height-based partitioning to solve the memory size
issue of the on-chip SRAM-based lookup pipeline within the
FPGA.

The second memory issue of the native pipeline is the mem-
ory distribution. For level-based mapping, the node distribution

7

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

ra
ti

o
 o

f
n

o
d

es
 i

n
 o

n
-c

h
ip

s

ta
g

e
s

(%
)

of external stages

height-based partitioning

level-based partitioning

Fig. 10. Ratio of nodes remaining in the on-chip pipeline

of the merged trie for the 14 FIBs is shown in Fig. 9(a). The
number of nodes in each stage varies substantially, leading to
inefficient memory utilization [19]. One solution is to assign
the equal-size SRAMs to each stage, and then balance nodes
across stages. Jiang et al. [20] proposed an approach called
OLP, which achieved balanced memory distribution across
stages. In our implementation, we adopt OLP to balance
memory across on-chip pipeline stages within the FPGA.

The goal of our implementation is to be able to map the 14
full IPv4 FIBs shown in Table I into an SRAM-based lookup
pipeline. The Xilinx FPGA XC6VLX240T containing 416
36Kb on-chip SRAMs, is used to build the on-chip SRAM-
based lookup pipeline. In our trie merging approach, about
80Mb memory is required to store the merged trie for the
14 full FIBs (see Fig. 7(c)). Therefore, less than 18% of the
total nodes should be left within the FPGA. Using the height-
based partitioning, we find that, after only 4 external stages
are added, the remaining nodes can fit in the on-chip SRAMs
within the given FPGA. We use OLP [20] to balance the
remaining nodes and build a 24-stage on-chip SRAM-based
pipeline. The number of nodes in each stage is almost the
same (about 8,625 nodes), and 407 on-chip 36Kb SRAMs are
needed in total, which is less than the total number of on-chip
SRAMs within the FPGA. Therefore, with the given FPGA
and 4 external stages (i.e., 4 external SRAMs), the merged trie
for 14 full IPv4 FIBs in our approach can be mapped into an
SRAM-based lookup pipeline. Additionally, one more external
stage for the table of next-hop-pointer arrays is required.

In the similar way, we map the tries in the other three
approaches into the SRAM-based pipeline within the same
FPGA. The number of external stages required in the pipeline
using the four approaches are summarized in Table II. These
results are consistent with those shown in Fig. 7(c). A smaller
trie can be mapped into the SRAM-based pipeline within the
FPGA with fewer external stages. Note that, the results in
our approach and in trie overlap with leaf pushing include an
external stage for the table of next-hop-pointer arrays.

C. Update Overhead

Although trie overlap with leaf pushing scales best in terms
of memory requirement, its update overhead is much higher
than that in the other three approaches, as leaf pushing makes
route updates complicated. In this section, we will evaluate

TABLE II
NUMBER OF EXTERNAL STAGES

Approach # of external stages

separate 9

overlap w/o leaf pushing 6

overlap w/ leaf pushing 3

our approach 5

TABLE III
NUMBER OF WRITE BUBBLES PER UPDATE (THEORETICAL BOUNDS)

Approach Maximum Minimum

overlap w/ leaf pushing 2W−1 0

the other three approaches 1 1

the update overhead in the pipeline based on all the four
approaches. The number of write bubbles per update can be
used as the metric to evaluate the update overhead in an
SRAM-based IP lookup pipeline [19].

In trie overlap with leaf pushing, the number of write
bubbles caused by one route update largely depends on where
the update occurs. For example, if prefix <1*, B5> is added
in FIB 2 shown in Fig. 1, it changes nothing in the leaf-pushed
merged trie shown in Fig. 2(b) and no write bubbles are needed
for this update. If a route update changes the prefix <000*,
B4> in FIB 2 to <000*, B5>, only one node in the leaf-
pushed merged trie should be modified, which requires only
one write bubble. However, if a route update changes prefix
<00*, A3> in FIB 1 to <00*, A5>, two nodes in the leaf-
pushed merged trie should be modified. Since these two nodes
are in the same stage of the pipeline, two write bubbles are
needed for this update. Note that a write bubble can modify
at most one node in each stage [19]. In the theoretical worst
case, one route update might change at most 2W−1 nodes in
the same stage, leading to 2W−1 write bubbles for this update,
where W is the maximum length of the IP prefix. In the other
three approaches, leaf pushing and any other prefix expansion
technologies are not used. As a result, the tries in the other
three approaches are similar to the original 1-bit trie, and at
most one node in each level should be modified for one route
update, which guarantees that one write bubble is required for
one route update in any case. The theoretical comparison of
update overhead is summarized in Table III.

To evaluate the update overhead in practice, we obtained
12-hour BGP update traces on all 14 full FIBs shown in
Table I. The number of prefix announcements and withdrawals
are shown in the last two columns of Table I, respectively.
These traces contain more than 26 million updates in total.
Fig. 11 shows the complementary cumulative distribution of
the update overhead in trie overlap with leaf pushing based on
the 12-hour BGP update traces. The number of write bubbles
per update varies significantly, as the overhead of each update
is largely dependent on where the update occurs on the merged
trie. During the 12 hours of the traces, there are 892 updates,
i.e., around 0.003% of the total updates, require more than 100

8

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

C
C

D
F

 (
%

)

Update overhead (# of write bubbles per update)

overlap w/ leaf pushing

Fig. 11. Complementary cumulative distribution function (CCDF) of actual
update overhead in trie overlap with leaf pushing

TABLE IV
NUMBER OF WRITE BUBBLES PER UPDATE IN PRACTICE

Approach Maximum Minimum

overlap w/ leaf pushing 21,200 0

the other three approaches 1 1

write bubbles per update in trie overlap with leaf pushing.
Although these do not occur often, once they happen, such
updates block the lookup pipeline for many clock cycles,
leading to many packet drops unless very large packet buffers
can store the incoming packets during these cycles. Table IV
summarizes the update overhead in the four approaches based
on the 12-hour update traces. In trie overlap with leaf pushing,
the worst-case update overhead is 21,200 write bubbles per
update. In this case, consider a link rate of 100Gbps (i.e.,
about 5.12ns per packet time for 64-byte packets) and a clock
frequency of 250MHz for the pipeline, as many as 16,563
packets may have to be buffered for this update to avoid packet
drops. Therefore, the high worst-case update overhead in trie
overlap with leaf pushing may impose a significant burden on
router buffers. In the other three approaches (i.e., the separated
approach, trie overlap without leaf pushing and our approach,
the update overhead is one write bubble per update in any
case, which is consistent with the result shown in Table III.

D. Lookup Performance Considerations

Generally speaking, for pipelined implementations, all the
four approaches can achieve the same lookup throughput of
one lookup per clock cycle. However, some subtle differences
exist due to the different node size.

For a given SRAM entry size, the lookup throughput of the
pipeline is affected by the node size of the trie. If the node
size is smaller than the SRAM entry size, a trie node can fit
in just one SRAM entry. As a result, one node access can be
completed in just one clock cycle, and a throughput of one
lookup per cycle can be achieved in the pipeline. However,
if the node size is larger than the SRAM entry size, multiple
SRAM entries are required to store one node, and thus multiple
memory accesses are needed for visiting one node. In this case,
one lookup per clock cycle cannot be guaranteed. Therefore,

it is easier to achieve a lookup throughput of one lookup per
clock cycle if the node size is smaller.

Among the four approaches, trie overlap without leaf push-
ing scales worst in terms of node size, as a next-hop pointer (8
bits) should be added into the node of the merged trie for every
added trie, as shown in Fig. 7(b). That means, as the number
of FIBs increases, the node size in trie overlap without leaf
pushing is easier to exceed the given SRAM entry size, which
may lead to degradation of lookup performance. Note that the
node size also affects the performance of write bubbles in the
same way.

Fortunately, in our implementations, the trie node in all
the four approaches for 14 full IPv4 FIBs, can fit in one
SRAM entry within the FPGA, as multiple on-chip SRAMs
can be combined together to form a large SRAM entry. As
a result, a throughput of one lookup per clock cycle can be
achieved. We have implemented the pipeline for our approach
within the FPGA, and the results show a maximum clock
frequency of 251MHz, which means that the pipeline can
achieve a throughput of 251 million lookups per second. All
the other three approaches can also achieve a comparable
lookup throughput in pipelined implementations.

E. Summary

Through the pipelined implementation, the following con-
clusions can be drawn.

(1) Separated Approach. For SRAM-based ip lookup
pipelines, the separated approach is good in terms of lookup
and update performance. However, the total size increases
drastically when the number of virtual routers increases, which
poses a great memory scalability challenge on the SRAM-
based lookup pipeline. We have shown that, for 14 full IPv4
FIBs, about 9 external stages are needed to reduce the memory
requirement for SRAM-based pipeline within the FPGA.

(2) Our Approach vs. Trie Overlap without Leaf Push-
ing. Our approach is an improvement for trie overlap without
leaf pushing, and the main difference is that, the node size
in our approach scales much better than that in trie overlap
without leaf pushing. Small nodes in our approach benefit the
pipeline in two aspects. First, it is easier for a trie with smaller
nodes to achieve higher lookup and update performance, as
mentioned in Section V.D. Second, the smaller trie size poses
a smaller memory size challenge on the SRAM-based lookup
pipeline within the FPGA, and thereby fewer external stages
are needed in our approach.

(3) Our Approach vs. Trie Overlap with Leaf Pushing.
Trie overlap with leaf pushing outperforms our approach in
terms of memory scalability. However, the main drawback in
trie overlap with leaf pushing is the large worst-case update
overhead, which may pose a great challenge on router buffer
design. By contrast, our approach makes a good balance
between the memory scalability and the update overhead.
We can achieve good memory scalability and guarantee fast
incremental updates simultaneously. Therefore, our approach
is a viable alternative to trie overlap with leaf pushing for
virtual routers.

9

VI. CONCLUSION

In this paper, we proposed a trie merging approach with fast
updates to address both memory scalability and route updates
challenges for virtual routers. We introduced a prefix bitmap
in each node of the merged trie to separate next-hop pointers
from trie nodes, which brings scalability to node size and
therefore the whole merged trie size. Moreover, through the
prefix bitmap, we completely avoided leaf pushing to reduce
the node size, and by this enabled fast incremental updates. We
implemented an SRAM-based lookup pipeline for the merged
trie. We proposed an efficient approach called height-based
partitioning, to address the memory size issue of the on-chip
SRAM-based pipeline. We evaluated how leaf pushing behaves
with real update traces and showed that leaf pushing leads to
high worst-case update overhead in practice. Based on our
approach, an on-chip SRAM-based lookup pipeline with 5
external stages can store 14 full IPv4 FIBs, and guarantee
a low update overhead of one write bubble per route update,
as well as a high lookup throughput of one lookup per clock
cycle.

The relatively small size of the merged trie in our approach,
e.g., 10MB (see Fig. 7(c)), suggests that the trie processing can
be done mainly in the cache memory of modern processors.
This opens opportunities to exploit the massive parallelism
available in modern multi-core or many-core processors, to
achieve good memory scalability, fast lookups and fast updates
for virtual routers.

ACKNOWLEDGMENT

This work was supported in part by National Basic Re-
search Program of China with Grant 2012CB315801, National
Natural Science Foundation of China (NSFC) with Grants
61133015, 61202411 and 61061130562, and Strategic Priority
Research Program of the Chinese Academy of Sciences with
Grant XDA06010303.

REFERENCES

[1] N. M. M. K. Chowdhury and R. Boutaba, “A survey of
network virtualization,” Computer Networks, 2010.

[2] G. Xie, P. He, H. Guan, Z. Li, Y. Xie, L. Luo, J. Zhang,
Y. Wang, and K. Salamatian, “PEARL: a programmable
virtual router platform,” IEEE Communications Maga-
zine, 2011.

[3] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici,
and L. Mathy, “Towards high performance virtual routers
on commodity hardware,” in Proc. ACM CoNEXT, 2008.

[4] M. B. Anwer, M. Motiwala, M. bin Tariq, and N. Feam-
ster, “Switchblade: a platform for rapid deployment of
network protocols on programmable hardware,” in Proc.
ACM SIGCOMM, 2010.

[5] J. Fu and J. Rexford, “Efficient IP-address lookup with a
shared forwarding table for multiple virtual routers,” in
Proc. ACM CoNEXT, 2008.

[6] H. Song, M. Kodialam, F. Hao, and T. Lakshman, “Build-
ing scalable virtual routers with trie braiding,” in Proc.
IEEE INFOCOM, 2010.

[7] T. Ganegedara, W. Jiang, and V. Prasanna, “Multiroot:
Towards memory-efficient router virtualization,” in Proc.
IEEE ICC, 2011.

[8] H. Le, T. Ganegedara, and V. K. Prasanna, “Memory-
efficient and scalable virtual routers using FPGA,” in
Proc. FPGA, 2011.

[9] T. Ganegedara, H. Le, and V. K. Prasanna, “Towards On-
the-Fly Incremental Updates for Virtualized Routers on
FPGA,” in Proc. FPL, 2011.

[10] V. Srinivasan and G. Varghese, “Fast address lookups
using controlled prefix expansion,” ACM Transactions on
Computer Systems, 1999.

[11] L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian,
“A hybrid IP lookup architecture with fast updates,” in
Proc. IEEE INFOCOM, 2012.

[12] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwaraki,
J. Crenne, L. Gao, and R. Tessier, “Scalable network
virtualization using FPGAs,” in Proc. FPGA, 2010.

[13] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and
N. McKeown, “NetFPGA - an open platform for teaching
how to build gigabit-rate network switches and routers,”
IEEE Transactions on Education, 2008.

[14] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous,
“Survey and taxonomy of IP address lookup algorithms,”
IEEE Network, 2001.

[15] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap:
Hardware/software IP lookups with incremental updates,”
Computer Communication Review, 2004.

[16] RIPE RIS Raw Data. [Online]. Available:
http://www.ripe.net/data-tools/stats/ris/ris-raw-data

[17] S. Sikka and G. Varghese, “Memory-efficient state
lookups with fast updates,” in Proc. ACM SIGCOMM,
2000.

[18] J. Hasan and T. N. Vijaykumar, “Dynamic pipelining:
Making IP-lookup truly scalable,” in Proc. ACM SIG-
COMM, 2005.

[19] A. Basu and G. Narlikar, “Fast incremental updates for
pipelined forwarding engines,” in Proc. IEEE INFO-
COM, 2003.

[20] W. Jiang and V. K. Prasanna, “A memory-balanced linear
pipeline architecture for trie-based IP lookup,” in Proc.
IEEE HOTI, 2007.

[21] Xilinx Inc. [Online]. Available: http://www.xilinx.com/
[22] W. Jiang and V. Prasanna, “Towards practical archi-

tectures for SRAM-based pipelined lookup engines,” in
Proc. IEEE INFOCOM Workshops, 2010.

